Thermodynamics a dynamical systems approach

8.24  ·  3,205 ratings  ·  393 reviews
thermodynamics a dynamical systems approach

A Dynamical Systems Theory of Thermodynamics by Wassim M Haddad

A brand-new conceptual look at dynamical thermodynamics

This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics.

This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics.

A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory. The book establishes a clear nexus between thermodynamic irreversibility, the second law of thermodynamics, and the arrow of time to further unify discreteness and continuity, indeterminism and determinism, and quantum mechanics and general relativity in the pursuit of understanding the most fundamental property of the universe--the entropic arrow of time.
File Name: thermodynamics a dynamical systems approach.zip
Size: 70054 Kb
Published 04.01.2019

Download Thermodynamics A Dynamical Systems Approach Princeton Series in Applied Mathematics

A Dynamical Systems Theory of Thermodynamics

The book's self-contained system-theoretic approach makes it accessible to a wide audience of readers. It will make a lasting contribution to the literature. Caratheodory on the advice of Max Born, results in a book that makes a fundamental contribution to the field. The main emphasis is on the notion of large-scale dynamical systems applied to the multitude of small objects contained in the macroscale description. Indeed, thermodynamics is the dynamics of an extremely large number of objects numbering on the order of Avogadro's number. That some definite results arise from that setting is the marvel of it all. Maugin, IEEE Control Systems "This is an original theory with many attractive features and which captures the known statements from classical thermodynamics, avoiding at the same time imprecise formulations.

This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics. This middle-ground theory involves deterministic large-scale dynamical system models that bridge the gap between classical and statistical thermodynamics. The authors' theory is motivated by the fact that a discipline as cardinal as thermodynamics--entrusted with some of the most perplexing secrets of our universe--demands far more than physical mathematics as its underpinning. Even though many great physicists, such as Archimedes, Newton, and Lagrange, have humbled us with their mathematically seamless eurekas over the centuries, this book suggests that a great many physicists and engineers who have developed the theory of thermodynamics seem to have forgotten that mathematics, when used rigorously, is the irrefutable pathway to truth. This book uses system theoretic ideas to bring coherence, clarity, and precision to an extremely important and poorly understood classical area of science.

This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics. In particular, the book uses system-theoretic ideas to bring coherence, clarity, and precision to an important and poorly understood classical area of science. The dynamical systems formalism captures all of the key aspects of thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation for thermodynamical systems out of equilibrium by unifying the theory of mechanics with that of classical thermodynamics. This book includes topics on nonequilibrium irreversible thermodynamics, Boltzmann thermodynamics, mass-action kinetics and chemical reactions, finite-time thermodynamics, thermodynamic critical phenomena with continuous and discontinuous phase transitions, information theory, continuum and stochastic thermodynamics, and relativistic thermodynamics. A Dynamical Systems Theory of Thermodynamics develops a postmodern theory of thermodynamics as part of mathematical dynamical systems theory.

Thermodynamics, A Dynamical Systems Approach

Property Search. - This book places thermodynamics on a system-theoretic foundation so as to harmonize it with classical mechanics. Using the highest standards of exposition and rigor, the authors develop a novel formulation of thermodynamics that can be viewed as a moderate-sized system theory as compared to statistical thermodynamics.

Du kanske gillar. Ladda ned. Spara som favorit. Skickas inom vardagar. A brand-new conceptual look at dynamical thermodynamics This book merges the two universalisms of thermodynamics and dynamical systems theory in a single compendium, with the latter providing an ideal language for the former, to develop a new and unique framework for dynamical thermodynamics.

0 thoughts on “A Dynamical Systems Theory of Thermodynamics by Wassim M Haddad

Leave a Reply

Your email address will not be published. Required fields are marked *